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Wavefront Sensing via High Speed DSP

ABSTRACT  
Future light-weighted and segmented primary mirror systems require active optical control to maintain 
mirror positioning and figure to within nanometer tolerances.  Current image-based wavefront sensing 

approaches rely on post-processing techniques to return an estimate of the aberrated optical wavefront with 
accuracies to the nanometer level.  But the lag times between wavefront sensing, and then control, 

contributes to a significant latency in the wavefront sensing implementation.  In this analysis we demonstrate 
accelerated image-based wavefront sensing performance using multiple digital signal processors (DSP's).  

The computational architecture is discussed as well as the heritage leading to the approach.
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Background 

• Technology development in the area of super-computing 
architectures for image-based wavefront sensing

• Goal: improve computational time for image based 
wavefront sensing performance by several orders of 
magnitude beyond the current state-of-the art

• Latency - an important limitation of image-based 
wavefront sensing is addressed
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Background

• Supercomputing architectures
• supercomputing hardware exists
• computational architectures for image-based WFS do not 

exist 
• obtain theoretical computational performance of the 

Supercomputer
• NASA’s priority list: - image-based WFS sensing will 

play a role in current & future NASA missions 
requiring optical correction and control.
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Conventional Approach:
e.g., Star-Fire Labs

•  Interferometry; Shack-Hartmann,

•  System complexity -  increased cost and 
potential system failures, 

•  Expensive to maintain, 

•  Little bang for the buck – since  Every 
degree of freedom requires a separate 
wavefront sensor.

ADVANTAGE:  these devices are analog and 
can provide near real-time monitoring of the 
wavefront.
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control

Image-Based Wavefront Sensing Concept: 

• Aberrations are detected out to arbitrary order,

• Basic Trade: optical hardware (conventional) / computational solution

• Significant delay - when the images are captured / wavefront is returned,

• Latency exists between “sensing” and the result (10’s of minutes to hours).

piston, tip, tilt from 
previous slide



  6

Algorithm:
Modified Misell-Gerchberg-Saxton
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Core Algorithm Based on Iterative-Transform 
Approach – Fourier Transform Intensive:

Iterative Transform:

diversity data (image constraint)

obscurations (pupil constraint)
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Solution - Reducing the Latency

• Parallel Processing
– Multiple Processing Units

• Equivalent dedicated Supercomputer
• High bandwidth
• Supercomputer exist, but…

– No dedicated solutions for wavefront sensing 
that properly exploit algorithm architecture.
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Digital Signal Processors (DSP)

•   DSP
         –   Great at scientific 

   calculations
         –   Great at FFT
         –   Good at I/O
         –   Low Power Rating        

•   Desktop Processors
        –   Pentium

         –   PowerPC
         –   Good at most tasks
         –   Multi-Tasking
         –   General Purpose



  10

DSP Heritage - Hammerhead DSP Boards

• Initial Implementation in 
2003

• Four DSP’s in right of lower 
image

• Factor of improvement over 
Single Pentium III

– 4.2
• ADSP-21160 - 480 Mflops 

per DSP

• Demonstrated Proof of 
Concept:  Showed that 
Algorithm performance is 
scalable with # of DSP’s.
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Analog Devices TigerSharc TS-101

• Harvard Architecture
– Internal Memory, (No Cache)
– Separate Data and Program 

Memory (4 and 2 Mbits each)
• Single Instruction Multiple Data 

(SIMD)
• Two Floating Point Cores
• 1.5 GFlops at 32 bit Single 

Precision
• 1 GB/sec of available I/O via 

link ports
• 3 Watts
• 250 MHz
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Analog Devices TigerSharc TS-101
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REV. A

TigerSHARC and the TigerSHARC logo are registered trademarks of Analog Devices, Inc.

KEY FEATURES
300 MHz, 3.3 ns Instruction Cycle Rate
6M Bits of Internal—On-Chip—SRAM Memory
19 mm ! 19 mm (484-Ball) or 27 mm ! 27 mm 

(625-Ball) PBGA Package
Dual Computation Blocks—Each Containing an ALU, a 

Multiplier, a Shifter, and a Register File
Dual Integer ALUs, Providing Data Addressing and 

Pointer Manipulation
Integrated I/ O Includes 14 Channel DMA Controller, 

External Port, Four Link Ports, SDRAM Controller, 
Programmable Flag Pins, Two Timers, and Timer 
Expired Pin for System Integration

1149.1 IEEE Compliant JTAG Test Access Port for 
On-Chip Emulation

On-Chip Arbitration for Glueless Multiprocessing with 
up to Eight TigerSHARC Processors on a Bus

KEY BENEFITS
Provides High Performance Static Superscalar DSP 

Operations, Optimized for Telecommunications 
Infrastructure and Other Large, Demanding 
Multiprocessor DSP Applications

Performs Exceptionally Well on DSP Algorithm and I/ O 
Benchmarks (See Benchmarks in Table 1 and Table 2)

Supports Low Overhead DMA Transfers Between 
Internal Memory, External Memory, Memory-Mapped 
Peripherals, Link Ports, Host Processors, and Other 
(Multiprocessor) DSPs

Eases DSP Programming Through Extremely Flexible 
Instruction Set and High Level Language Friendly DSP 
Architecture

Enables Scalable Multiprocessing Systems with Low 
Communications Overhead
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Architecture

• One DSP will not solve problem
• Connect multiple DSPs with interprocessor 

communication (Link Ports)
• Standard Cluster – 4 DSPs

– Shared External Memory SDRAM
– Read/Write internal memory

• Connect multiple clusters 
• Host computer connected via PCI bus
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Architecturual Block Diagram
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Step 1, Produce Results

• Disregard Timing
• Produce reliable wavefront data on DSPs

– Start on 1 DSP
– Transition to 4

•
• Bottlenecks on new architecture

– External to Internal Memory movement
– Data Downloading from Host Computer
– Computations (FFTs)

– Number of FFTs per DSP
– Speed of each FFT
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Direct Memory Access

• DMA
– Allow movement of data without interrupting the core of the 

processor
– Process Data Set 1 while acquiring Data Set 2

• Source and Destinations
– Host computer 
– External shared memory
– DSP internal memory
– Link Ports Computation 

Block
A

Computation 
Block
B

Internal Memory

DMA

External
Memory

Memory 
Interface
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DSP Board
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Multiple DSPs

• Based on timing for 1 Image on 1 DSP
– Need more then 8 DSPs
– Need more then 1 board

• Integrating Clusters and Boards
– For each image Data only shared on 2-D 

FFT
– For all images, Data shared on averaging 

the estimated phase
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Reducing redundant work

• Optimize memory and FFTs for padding
– Detector Image Size versus Pupil Image Size

• Downloading Constant Data outside control loop
– System parameters don’t change
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Optimized Library

• Decrease the time for each FFT

• TS-Lib for TigerSharc DSP
– Floating Point Library optimized
– Optimized for 1 DSP
– Fastest available FFT 
– Fast Memory Movement (Simple)
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Decrease FFTs per DSP

• Increase number of DSPs
• Image FFT (2-D)

– FFT each row
– FFT result of each column

• Requires access to result
– Data on each DSP must be moved to every 

other DSP
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2-D FFT Transpose 1/2

• Must be fast, because it happens twice per inner loop.
• Transpose over multiple Processors

– Move data from each DSP to every other DSP

P1 P2 P3 P4 P1 P2 P3 P4

Transpose

Memory
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2-D FFT Transpose 2/2
    Two Algorithms

• Single Stage
– Each DSP transfers to every other 

DSP (link ports)
– Faster theoretical 

•     Multiple Stage
    –   Each DSP transposes on the 

 cluster. (Shared Memory)
         –    Then, Each cluster transposes 

 (link ports)
         –    One DSP “speaks” for its cluster

   to the other cluster
         –    Faster in application
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Experiment 

• 4  Diversity-Defocus images from GSFC’s Wavefront Control 
Testbed (both + and (-) defocus shown)

• Detector:  16 bit, 512x512, 9µ pixels
• Pupil:        224x224

• 0o Trefoil Introduced using Xinetics Deformable Mirror 
= .25 HeNe waves

• Other aberrations < .01
• Iterations:   5 inner loops, 25 outer loops, 95% Convergence
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Speed Improvements

• Maltab Timing: 16.5 Minutes 
• Pentium IV at 3.0 GHz

• 16 DSP timing: 5.1 Seconds
• 4 Images in serial  

• 32 DSP timing: 2.6 Seconds
• 2 Images in parallel

• Accuracy for 7 Significant Figures
• Factor of Improvement 

– 400



  25

SPOT (Spherical Primary 
Optical Telescope) Wavefront 
Sensing & Control System:
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(1) Firewire Camera Interface

(3) WFS Algorithms (DSP)

(4) Exit Pupil Phase

(5) Control Algorithm
(6) Actuator Control Interface

Control Computer

(2) Camera Data (Ethernet)
Diversity
Defocus

3.5 meter

NASA IR&D Proposal Funded in 2003

•
• DSP becomes a server

– Controlling a supercomputer 
with a laptop
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Conclusions

• Lessons Learned
– Matrix Transpose Algorithms
– Scalability

• Next Steps
– Removing the host computer

- Images feed directly onto DSP
– Implement each image in parallel

– Add 32 more DSPs


